Session IX: Impact of Recent Environmental Regulations on Defense, Test, Evaluation and Training

Case Study: Halon Replacements for Aircraft Fire and Explosion Protection

Juan A. Vitali, Ph.D.

Chief, Fire Research Team, AFRL/MLQC Senior Engineer, Survivability Flight, 46th Test Wing Professor, Georgia Institute of Technology

Phone: (937) 255-7125 X 220 Email: Juan.Vitali@wpafb.af.mil

Presented to NDIA Vancouver, CANADA March 2, 2000

History

- Montreal Protocol: Bans the PRODUCTION of Ozone Depleting Substances by 1994
- Copenhagen and successive Amendments: Create exemptions for critical use
- Consensus: Difficult problem to solve but implement solutions as they come available
- AF takes lead in developing Halon 1211 alternatives, all services dive in 1301 replacements

RDT&E Pays Off... After \$11 million and 7 years...

	Halon 1301	Halon 13001	FC-218	HFC-125
Chemical Formula	CF ₃ Br	CF ₃ I	C ₃ F ₈	C ₂ F ₅ H
Nomenclature	Bromotrifluoromethane	Trifluoromethyliodide	Perfluoropropane	Pentafluoroethane
Trade Name	Halon 1301	Triodide	CEA 308	FE 25
Molecular Weight	149	196.91	188.02	120.02
Boiling Pt @ 1 atm (F)	-72	-9	-34.1	-54.7
Critical Temperature (F)	154	251	161.4	151.25
Vapor Pressure (psia)	216	63.7	114	190
Solubility in Jet Fuel	5.2	To Be Tested	1.2	Not Tested
GWP	5600	5	6100	2800
ODP	10 to 14	0.0002	0	0
Atmospheric Lifetime	50 yrs	5 days	6000 yrs	30 yrs

Don't EVER give up!

Success to date

- Found CF₃I as replacement for fuel tank inertion for the F16
 - Example of interagency cooperation
 - DOTE-JLF, EPA, AFRL, Academia and Commercial industry teamed to assess occupational safety, performance, risk assessment, cost
 - Found CF₃I very suitable for use in normally unoccupied areas such as the F16 fuel tank, engine nacelles, dry bays and military hardware
 - Performance: **DROP IN REPLACEMENT** for F-16 fuel tank, F15, F18 engine nacelle prelim data shows drop in behavior
- Approved for use by ASC (low risk of insertion)

Retrofit Costs

- Total retrofit cost:\$12.4 million
 - 1415 aircraft
 - \$6300 per F16, estimate 200,000 pounds buy of CF₃I. Begin in FY 04, be done in 5 years
 - Perform replacement on regular maintenance schedule thus no significant down time

Halon Bank

- ■Established by DLA, with concurrence of EPA
- "Responsible User" Policy: Use but perform RDT&E and implement when replacement is found

Current USAF Policy on Halon Replacements

- Halon bank stands by the year 2014 at 2.4 million pounds
 - Recent purchase by US DOD of Australian Bank adds 500,000 pounds
- CF₃I, even though potentially a direct retrofit, would add cost and thus make it economically unfeasible to replace
- Therefore,

CONTINUE TO USE BANK

Rationale

Priorities have shifted

- Increased deployment for humanitariannon traditional military missions shift resources from RDT&E into Modernization, and Readiness
- Pie has not gotten bigger: Choices are simple:
 - Buy bullets for our soldiers in Kosovo or
 - Replace Ozone Depleting Substances

Consequences of Inaction

- Cancer rates are increasing in Southern Hemisphere:
 - UV Fluxes have steadily increased
 - Stratospheric Br. Cl loading have steadily increased

Phytoplankton and ecological dislocation -disruption are real

Responsible Policy

- When possible and economically feasible... Replace!
- Greatest burden to replace Halon belies on greatest generators of pollution
- Stewardship of the environment is our duty to future generations

Thank you for your attention